Mixed Upwinding Covolume Methods on Rectangular Grids for Convection-Diffusion Problems
نویسندگان
چکیده
We consider an upwinding covolume or control-volume method for a system of first order PDEs resulting from the mixed formulation of a convection-diffusion equation with a variable anisotropic diffusion tensor. The system can be used to model the steady state of the transport of a contaminant carried by a flow. We use the lowest order Raviart–Thomas space and show that the concentration and concentration flux both converge at one-half order provided that the exact flux is in H1(Ω)2 and the exact concentration is in H1(Ω). Some numerical experiments illustrating the error behavior of the scheme are provided.
منابع مشابه
A General Framework for Constructing and Analyzing Mixed Finite Volume Methods on Quadrilateral Grids: The Overlapping Covolume Case
We present a general framework for constructing and analyzing finite volume methods applied to the mixed formulation of second-order elliptic problems on quadrilateral grids. The control volumes, or covolumes, in the grids overlap. An overlapping finite volume method of this type was first introduced by Russell in [T. F. Russell, Tech. report 3, Reservoir Simulation Research Corp., Tulsa, OK, 1...
متن کاملEquidistribution grids for two-parameter convection–diffusion boundary-value problems
In this article, we propose an adaptive grid based on mesh equidistribution principle for two-parameter convection-diffusion boundary value problems with continuous and discontinuous data. A numerical algorithm based on an upwind finite difference operator and an appropriate adaptive grid is constructed. Truncation errors are derived for both continuous and discontinuous problems. Parameter uni...
متن کاملMixed Covolume Methods on Rectangular Grids For Elliptic Problems
We consider a covolume method for a system of first order PDEs resulting from the mixed formulation of the variable-coefficient-matrix Poisson equation with the Neumann boundary condition. The system may be used to represent the Darcy law and the mass conservation law in anisotropic porous media flow. The velocity and pressure are approximated by the lowest order Raviart-Thomas space on rectang...
متن کاملFinite Element Methods for Convection Diffusion Equation
This paper deals with the finite element solution of the convection diffusion equation in one and two dimensions. Two main techniques are adopted and compared. The first one includes Petrov-Galerkin based on Lagrangian tensor product elements in conjunction with streamlined upwinding. The second approach represents Bubnov/Petrov-Galerkin schemes based on a new group of exponential elements. It ...
متن کاملMeshless Local Petrov-Galerkin (MLPG) Method for Convection-Diffusion Problems
Due to the very general nature of the Meshless Local Petrov-Galerkin (MLPG) method, it is very easy and natural to introduce the upwinding concept (even in multidimensional cases) in the MLPG method, in order to deal with convection-dominated flows. In this paper, several upwinding schemes are proposed, and applied to solve steady convectiondiffusion problems, in one and two dimensions. Even fo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM J. Scientific Computing
دوره 21 شماره
صفحات -
تاریخ انتشار 1999